Mas receptor deficiency is associated with worsening of lipid profile and severe hepatic steatosis in ApoE-knockout mice.
نویسندگان
چکیده
The classical renin-angiotensin system pathway has been recently updated with the identification of additional molecules [such as angiotensin converting enzyme 2, ANG-(1-7), and Mas receptor] that might improve some pathophysiological processes in chronic inflammatory diseases. In the present study, we focused on the potential protective role of Mas receptor activation on mouse lipid profile, liver steatosis, and atherogenesis. Mas/apolipoprotein E (ApoE)-double-knockout (DKO) mice (based on C57BL/6 strain of 20 wk of age) were fed under normal diet and compared with aged-matched Mas and ApoE-single-knockout (KO), as well as wild-type mice. Mas/ApoE double deficiency was associated with increased serum levels of atherogenic fractions of cholesterol, triglycerides, and fasting glucose compared with wild-type or single KO. Serum levels of HDL or leptin in DKO were lower than in other groups. Hepatic lipid content as well as alanine aminotransferase serum levels were increased in DKO compared with wild-type or single-KO animals. Accordingly, the hepatic protein content of mediators related to atherosclerotic inflammation, such as peroxisome proliferator-activated receptor-α and liver X receptor, was altered in an adverse way in DKO compared with ApoE-KO. On the other hand, DKO mice did not display increased atherogenesis and intraplaque inflammation compared with ApoE-KO group. In conclusion, Mas deletion in ApoE-KO mice was associated with development of severe liver steatosis and dyslipidemia without affecting concomitant atherosclerosis. Mas receptor activation might represent promising strategies for future treatments targeting both hepatic and metabolic alterations in chronic conditions clustering these disorders.
منابع مشابه
Urotensin II receptor knockout mice on an ApoE knockout background fed a high-fat diet exhibit an enhanced hyperlipidemic and atherosclerotic phenotype.
RATIONALE Expression of the vasoactive peptide Urotensin II (UII) is elevated in a number of cardiovascular diseases. OBJECTIVE Here, we sought to determine the effect of UII receptor (UT) gene deletion in a mouse model of atherosclerosis. METHODS AND RESULTS UT knockout (KO) mice were crossed with ApoE KO mice to generate UT/ApoE double knockout (DKO) mice. Mice were placed on a high-fat W...
متن کاملAngiotensin-converting enzyme 2/angiotensin-(1–7)/Mas axis activates Akt signaling to ameliorate hepatic steatosis
The classical axis of renin-angiotensin system (RAS), angiotensin (Ang)-converting enzyme (ACE)/Ang II/AT1, contributes to the development of non-alcoholic fatty liver disease (NAFLD). However, the role of bypass axis of RAS (Angiotensin-converting enzyme 2 (ACE2)/Ang-(1-7)/Mas) in hepatic steatosis is still unclear. Here we showed that deletion of ACE2 aggravates liver steatosis, which is corr...
متن کاملC5L2 Deficiency Enhances Development of Atherosclerosis in ApoE Knockout Mice
Background: The complement system is important in development of atherosclerosis via regulation of lipid and glucose metabolism as well as inflammation. Aim: The aim of the present study was to further analyze the contribution of C5L2 to the development of atherosclerosis. We proposed that, with DIO feeding, C5L2 deficiency would promote a phenotype that encourages atherosclerosis development. ...
متن کاملTollip Deficiency Alters Atherosclerosis and Steatosis by Disrupting Lipophagy
BACKGROUND Compromised lipophagy with unknown mechanisms may be critically involved in the intracellular accumulation of lipids, contributing to elevated atherosclerosis and liver steatosis. We hypothesize that toll-interacting protein (Tollip), a key innate immune molecule involved in the fusion of autolysosome, may play a significant role in lipophagy and modulate lipid accumulation during th...
متن کاملImpairment of Hepatic Growth Hormone and Glucocorticoid Receptor Signaling Causes Steatosis and Hepatocellular Carcinoma in Mice
UNLABELLED Growth hormone (GH)-activated signal transducer and activator of transcription 5 (STAT5) and the glucocorticoid (GC)-responsive glucocorticoid receptor (GR) are important signal integrators in the liver during metabolic and physiologic stress. Their deregulation has been implicated in the development of metabolic liver diseases, such as steatosis and progression to fibrosis. Using li...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Regulatory, integrative and comparative physiology
دوره 305 11 شماره
صفحات -
تاریخ انتشار 2013